Thermal Inertia of the Moon from LRO-Diviner Lunar Radiometer Observations

Paul Hayne, Ashwin Vasavada, Matt Siegler, Ben Greenhagen JPL/Caltech

Rebecca Ghent U. Toronto/PSI

Josh Bandfield
Space Science Inst.

Oded Aharonson
Weizmann Institute of Science

David Paige, Jean-Pierre Williams
UCLA

NASA Exploration Science Forum, Moffett Field, CA - 2014

Background: Thermal Inertia

- Thermal inertia (TI) is a physical parameter describing the tendency of a material to resist changes in temperature (formally: √kρc_p)
- Dust and sand = low TI, rocks and densely packed grains = high TI
- Orbital remote sensing highly successful for determining TI on Mars; used for geology and landing site selection

LRO Diviner Overview

Observation Strategy	Primarily nadir pushbroom mapping
Detectors	Nine 21-element linear arrays of uncooled thermopile detectors
Fields of view	Detector Geometric IFOV: 6.7 mrad in-track 3.4 mrad cross track 320 m on ground in track for 50 km altitude 160 m on ground cross track for 50 km altitude Swath Width (Center to center of extreme pixels): 67 mrad; 3.4 km on ground for 50 km altitude

Rock Abundance & Regolith Temperature

- Use Diviner nighttime brightness temperatures at different wavelengths to separate surface rocks from regolith
- Two free parameters:
 - 1. Rock concentration
 - 2. Regolith temperature

Bandfield et al. (2011)

Surface Blocks

Diviner "Cold Spots"

- Large (100's of crater radii) regions around some fresh craters are unusually cold at night
- 400+ documented cases
- Cannot be ejecta due to volume of material required
- Current best hypothesis is *in situ* decompression of regolith due to turbulent vapor or scouring by ballistic particles (Bandfield et al., submitted, 2013)

Equatorial Results from Vasavada et al. (2012)

[47] Our formulation for ρ is

$$\rho(z) = \rho_d - (\rho_d - \rho_s) \times \exp(-z/0.06),$$
 (2)

where the surface value is $\rho_s = 1300 \text{ kg/m}^3$ and the deep bound is $\rho_d = 1800 \text{ kg/m}^3$. The formulation for k is

$$k(z,T) = k_d - (k_d - k_s) \times \exp(-z/0.06) + \chi k_s \times (T/350)^3,$$
(3)

 Small correction: the radiative term should be proportional to the local solid conductivity, not the (constant) surface value

Thermal Skin Depth

Eclipse Thermal Inertia

- Fresh, rocky craters + ejecta

 Rocky spots have ~2x the average TI
 - If rocks make up 1 5% of the area in "rocky" spots, and assuming linear mixing, then individual rocks have TI ~ 20 – 100x regolith
 - If we believe the average TI \sim 15 SI units, then rocks have TI \sim 300 1500 units

Best-fit Parameter Values

Parameter	Vasavada et al. (2012)	Hayne et al. (2013)	Constraints
$ ho_{ m s}, ho_{ m d}$	1300, 1800 kg/m ³	1100, 1800 kg/m ³	Apollo core samples (Carrier et al., 1975)
k_s , k_d	6.0e-4, 7.0e-3 W/m/ K	6.0e-4, 3.0e-3 W/m/ K	Diviner nighttime temps
X	2.7	2.7	Latitude dependence of <i>T</i>
Albedo: a,b	0.045, 0.14	0.045, 0.14	LROC? Diviner solar?
ε	0.98	0.95	Diviner IR
Q	16 mW/m ²	17 mW/m ²	Apollo heat flow
Н	0.06	Variable; avg ~ 0.06	

Regolith Profile Fits: "H-parameter"

$$\rho(z) = \rho_d - (\rho_d - \rho_s)e^{-z/H}$$

'H' -> Thermal Inertia Conversion

Applications: Regolith Formation

- Variations in H-parameter/thermal inertia indicate real differences in regolith density associated with geologic features
- Do these variations constrain models of regolith formation and evolution?
- See paper by R. Ghent (Geology, 2014)

Jackson

Crater Evolution (Ghent et al., 2013)

"H-parameter"

Regolith Formation Models

Fig. 9. Number of times n the regolith is turned over as a function of turnover depth and meteoroid mass, flux constant.

Gault et al. (1974) regolith gardening model calculates probability of overturn at each depth, after a certain period of time

log(N) ~ -log(depth) → Expect exponential increase in density w/ depth if 'overturn' decreases density

Crater Ages vs. Upper Regolith Thickness

Sensitivity of Thermal Technique

Global Thermal Inertia Map

OMAT

Cold Spots

Pyroclastic Deposits

Summary

- Diviner data can be used to separate rock abundance from regolith thermal inertia
- Thermal inertia of upper ~10 cm of lunar regolith is very low (~60-70 SI) and uniform to within ~10% over the lunar surface
- A model with exponentially increasing density in the upper few cm of regolith is consistent with measured cooling curves
- Regolith thermal inertia is correlated with crater age (older = fluffier)
- Global regolith thermal inertia pattern correlated with optical maturity, but some intriguing differences
- Some pyroclastic deposits have low thermal inertia (grain size uniformity?)
- Thermal inertia maps are available for your region of interest!
- Slope effects are prominent and will be removed in a future version

Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration

Backup

Model Regolith Properties

Thermal conductivity:

$$k_c(z) = k_d - (k_d - k_s) \frac{\rho_d - \rho(z)}{\rho_d - \rho_s}$$

• Density:

$$\rho(z) = \rho_d - (\rho_d - \rho_s)e^{-z/H}$$

Albedo:

$$A(\theta) = A_0 + a(\theta/45^\circ)^3 + b(\theta/90^\circ)^8$$

Radiative

"conductivity":
$$T$$
 $k_{total} = k_c \left[1 + \chi \left(\frac{T}{350 \text{K}} \right)^3 \right]$

Parameter	Value	Depth/location	Latitude	Reference
Mean annual temperature	216 (±5 K)	Surface	20°N	Keihm et al. (1973)
и	255-256 K	130 cm	20°N	и
u	251-252 K	100 cm	26°N	и
Density	1100 kg/m³	~0 cm	26°N	Carrier et al. (1973)
и	1600 kg/m³	0-30 cm	26°N	и
и	1800-1900 kg/m³	30-60 cm	26°N	и
H-parameter	0.04-0.1 m	-	20-26°N	
Thermal conductivity	0.9-1.5 x10 ⁻³ W/m/K	0-2 cm	20°N	Keihm et al. (1973)
и	0.9-1.3 x10 ⁻² W/m/K	> 50 cm	20-26°N	Langseth et al. (1976)
u	0.6 x10 ⁻³ W/m/K	< 10 cm	equatorial	Jones et al. (1975)
и	0.6 x10 ⁻³ W/m/K	~0 cm	equatorial	Vasavada et al. (2012)
u	7.0 x10 ⁻³ W/m/K	~1 m	equatorial	u
Thermal diffusivity (k/pc)	0.4-1.0 x10 ⁻⁸ m ² /s	0-2 m	20-26°N	Langseth et al. (1976)
Radiative "conductivity" (χ)	1.0 - 3.0	0-2 m	Low latitude	various

To be added: microwave observations (temperatures at depth)

Radiative Conductivity: The "Chi" Parameter

Latitude Dependence of Model Fits

User Guide

19 | 30

30.5

East longitude (°)

0.02

31

Weschler et al. 1972

Table 4	Conduction	and	radiation	contributions	to	thermal	conductivity
---------	------------	-----	-----------	---------------	----	---------	--------------

	_		Solid conduction	Radiation	Ratio of			
		Density,		contribution (A),	radiati	ion/condu	ction	
Material	size, μ	g/cm ³	$w/cm-^{\circ}K$, x 10^{6}	$w/cm-{}^{\circ}K^4$, x 10^{13}	200°K	300°K		Reference
Basal+	10-37	1.36	$21-1.6 \times 10^3/T^a$	0.88	0.05	0.15	0.34	16
	44-74	1.43	6.10	2.10	0.28	0.94	2.20	16
	37-62	0.79	5.10	1.70	0.26	0.90	2.10	26
	37-62	0.88	6.50	1.70	0.21	0.71	1.70	26
	37-62	0.98	6.20	1.80	0.23	0.71	1.90	26
	37-62	1.10	8.90	1.90	0.17	0.58	1.40	26
	37-62	1.30	12.40	2.40	0.15	0.52	1.20	26
	37-62	1.50	16.20	3.40	0.17	0.57	1.30	26
Quartz	<10	1.00	25.00	3.00	0.10	0.33	0.77	16
	44-74	1.30	33.00	4.20	0.10	0.34	0.81	22
Glass beads	<37	1.2-1.5	9.50	6.30	0.53	1.80	4,20	22
	53-74	1.4-1.7	7.00	3.40	0.39	1.30	3.10	22
	88-125	1.60	3.20	8.50	2.10	7.16	17.00	22
	250-350	1.5-1.6	0.95	13.00	10.90	37.00	87.70	22
	590-840	1.6-1.8	(-0.66) ^b	26.00			•••	22
	44-62	1.40	4.70	3.00	0.51	1.70	4.10	16
	10-20	1.50	4.70	2.80	0.48	1.60	3.80	23
	38-53	1.50	4.50	3.30	0.59	1.90	4.70	23
	125-243	1.30	0.07°	5.40	61.70	208	493	23
Pumice	10-37		5.10	3.10	0.49	1.70	3.90	16
	44-74	• • •	2.50	3.60	1.10	3.80	9.10	16
Olivine	<74	1.37	10.80	1.30	0.096	0.33	0.77	22

Data were best fit by Eq. (7c).

 $^{^{\}mathrm{b}}$ A negative value of the conduction term was obtained; this is not possible but indicates that conduction was small.

 $^{^{\}rm c}$ Several values ranging from -0.09 to +0.15 were obtained for three similar samples; the radiation term varied from 3.1 to 5.4 for these samples.

Density-conductivity relationships

